Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Plant Pathol J ; 39(5): 449-465, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37817492

RESUMO

Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense- and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.

3.
Virus Res ; 336: 199205, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37607595

RESUMO

To gain a deeper understanding of the molecular mechanisms involved in viral infection and the corresponding plant resistance responses, it is essential to investigate the interactions between viral and host proteins. In the case of viral infections in plants, a significant portion of the affected gene products are closely associated with chloroplasts and photosynthesis. However, the molecular mechanisms underlying the interplay between the virus and host chloroplast proteins during replication remain poorly understood. In our previous study, we made an interesting discovery regarding soybean mosaic virus (SMV) infection in resistant and susceptible soybean cultivars. We found that the photosystem I (PSI) subunit (PSaC) and ATP synthase subunit α (ATPsyn-α) genes were up-regulated in the resistant cultivar following SMV-G7H and SMV-G5H infections compared to the susceptible cultivar. Overexpression of these two genes within the SMV-G7H genome in the susceptible cultivar Lee74 (rsv3-null) reduced SMV accumulation, whereas silencing of the PSaC and ATPsyn-α genes promoted SMV accumulation. We have also found that the PSaC and ATPsyn-α proteins are present in the chloroplast envelope, nucleus, and cytoplasm. Building on these findings, we now characterized protein-protein interactions between PSaC and ATPsyn-α with two viral proteins, NIb and NIa-Pro, respectively, of SMV. Through co-immunoprecipitation (Co-IP) experiments, we confirmed the interactions between these proteins. Moreover, when the C-terminal region of either PSaC or ATPsyn-α was overexpressed in the SMV-G7H genome, we observed a reduction in viral accumulation and systemic infection in the susceptible cultivar. Based on these results, we propose that the PSaC and ATPsyn-α genes play a modulatory role in conferring resistance to SMV infection by influencing the function of NIb and NIa-Pro-in SMV replication and movement. The identification of these photosynthesis-related genes as key players in the interplay between the virus and the host provides valuable insights for developing more targeted control strategies against SMV. Additionally, by utilizing these genes, it may be possible to genetically engineer plants with improved photosynthetic efficiency and enhanced resistance to SMV infection.


Assuntos
Vírus do Mosaico , Potyvirus , Glycine max , Proteínas de Cloroplastos , Potyvirus/genética , Vírus do Mosaico/genética , Doenças das Plantas
4.
Plant Physiol ; 192(4): 3088-3105, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37099452

RESUMO

Viral synergism occurs when mixed infection of a susceptible plant by 2 or more viruses leads to increased susceptibility to at least 1 of the viruses. However, the ability of 1 virus to suppress R gene-controlled resistance against another virus has never been reported. In soybean (Glycine max), extreme resistance (ER) against soybean mosaic virus (SMV), governed by the Rsv3 R-protein, manifests a swift asymptomatic resistance against the avirulent strain SMV-G5H. Still, the mechanism by which Rsv3 confers ER is not fully understood. Here, we show that viral synergism broke this resistance by impairing downstream defense mechanisms triggered by Rsv3 activation. We found that activation of the antiviral RNA-silencing pathway and the proimmune mitogen-activated protein kinase 3 (MAPK3), along with the suppression of the proviral MAPK6, are hallmarks of Rsv3-mediated ER against SMV-G5H. Surprisingly, infection with bean pod mottle virus (BPMV) disrupted this ER, allowing SMV-G5H to accumulate in Rsv3-containing plants. BPMV subverted downstream defenses by impairing the RNA-silencing pathway and activating MAPK6. Further, BPMV reduced the accumulation of virus-related siRNAs and increased the virus-activated siRNA that targeted several defense-related nucleotide-binding leucine-rich repeat receptor (NLR) genes through the action of the suppression of RNA-silencing activities encoded in its large and small coat protein subunits. These results illustrate that viral synergism can result from abolishing highly specific R gene resistance by impairing active mechanisms downstream of the R gene.


Assuntos
Glycine max , Potyvirus , Resistência à Doença/genética , Genes vpr , Potyvirus/fisiologia , RNA Interferente Pequeno , RNA de Cadeia Dupla , Mecanismos de Defesa , Doenças das Plantas
5.
Virus Res ; 326: 199061, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738934

RESUMO

Fusarium graminearum virus 2 (FgV2) infection induces phenotypic changes like reduction of growth rate and virulence with an alteration of the transcriptome, including various transcription factor (TFs) gene transcripts in Fusarium graminearum. Transcription factors are the primary regulator in many cellular processes and are significant in virus-host interactions. However, a detailed study about specific TFs to understand interactions between FgV2 and F. graminearum has yet to be conducted. We transferred FgV2 to a F. graminearum TF gene deletion mutant library to identify host TFs related to FgV2 infection. FgV2-infected TF mutants were classified into three groups depending on colony growth. The FgV2 accumulation level was generally higher in TF mutants showing more reduced growth. Among these FgV2-infected TF mutants, we found several possible TFs that might be involved in FgV2 accumulation, generation of defective interfering RNAs, and transcriptional regulation of FgDICER-2 and FgAGO-1 in response to virus infection. We also investigated the relation between FgV2 accumulation and production of reactive oxygen species (ROS) and DNA damage in fungal host cells by using DNA damage- or ROS-responsive TF deletion mutants. Our studies provide insights into the host factors related to FgV2 infection and bases for further investigation to understand interactions between FgV2 and F. graminearum.


Assuntos
Fusarium , Fatores de Transcrição , Fatores de Transcrição/genética , Espécies Reativas de Oxigênio , Fusarium/genética , Transcriptoma , Doenças das Plantas
6.
Plant Pathol J ; 39(1): 28-38, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36760047

RESUMO

Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host's machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins' role in replicating plant (+)ss RNA viruses.

7.
Mol Plant Pathol ; 24(2): 179-187, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36416097

RESUMO

Infection of viruses from the genera Bromovirus, Potyvirus, and Potexvirus in Nicotiana benthamiana induces significant up-regulation of the genes that encode the HSP70 family, including binding immunoglobulin protein 2 (BiP2). Three up-regulated genes were knocked down and infection assays with these knockdown lines demonstrated the importance of the BiP2 gene for potyvirus infection but not for infection by the other tested viruses. Distinct symptoms of cucumber mosaic virus (CMV) and potato virus X (PVX) were observed in the BiP2 knockdown line at 10 days postagroinfiltration. Interestingly, following inoculation with either soybean mosaic virus (SMV) or pepper mottle virus (PepMoV) co-expressing green fluorescent protein (GFP), neither crinkle symptoms nor GFP signals were observed in the BiP2 knockdown line. Subsequent reverse transcription-quantitative PCR analysis demonstrated that knockdown of BiP2 resulted in a significant decrease of SMV and PepMoV RNA accumulation but not PVX or CMV RNA accumulation. Further yeast two-hybrid and co-immunoprecipitation analyses validated the interaction between BiP2 and nuclear inclusion protein b (NIb) of SMV. Together, our findings suggest the crucial role of BiP2 as a proviral host factor necessary for potyvirus infection. The interaction between BiP2 and NIb may be the critical factor determining susceptibility in N. benthamiana, but further studies are needed to elucidate the underlying mechanism.


Assuntos
Infecções por Citomegalovirus , Potyvirus , Nicotiana , Provírus/genética , RNA/metabolismo , Potyvirus/genética , Doenças das Plantas
8.
Front Plant Sci ; 13: 1048074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388582

RESUMO

Pepper mottle virus (PepMoV) infects primarily Capsicum species, including pepper and bell pepper which are important vegetable and spice crops in Korea. We have previously collected 13 PepMoV isolates from nine regions comprising five provinces, causing different symptoms on inoculated indicator host plants in Korea. To further identify the responsible symptom determinant(s) and explore viral protein functions of PepMoV, two out of 13 isolates, including 134 and 205136, were used in this study. Isolate 134 causes necrosis and yellowing, while 205136 causes severe mottle and yellowing symptoms on Nicotiana benthamiana. All chimeric and site-directed mutants contain the PepMoV 134 genome as a backbone with specific regions switched for those from counterparts of PepMoV 205136. Effects of all mutants compared with 134 after inoculation onto N. benthamiana by agroinfiltration. Results from our study provide direct evidence that the helper component-proteinase (HC-Pro) and the nuclear inclusion protein b (NIb)-coat protein (CP) regions are involved in virus accumulation and symptom determinants. In addition, we mapped to amino acid residues tyrosine, glycine, and leucine at position 360, 385, and 527, respectively, in the HC-Pro region participate in faster viral accumulation or movement in the plant. The residue valine at position 2773 of NIb plays an essential role in isolate 134 symptom development. As part of this study, we seek to gain insight into viral factors involved in the PepMoV infection cycle and a better understanding of plant-virus interactions. These findings complement the insufficiency of the gene function study of the PepMoV virus and provide a novel perspective for the protein function study of the Potyvirus.

9.
Arch Virol ; 167(6): 1487-1490, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35451685

RESUMO

In 2020, lilac trees showing virus-like symptoms such as leaf necrosis and chlorosis were observed in Korea. After RT-PCR detection with specific primer sets designed based on previously reported nucleotide sequences of viruses in lilac, the agent was identified as ligustrum virus A (LVA). The complete genome of the virus was sequenced and used for phylogenetic analysis. The genome of this novel strain of LVA, LVA-SNU, is 8524 nucleotides long, excluding the poly(A) tail, and shares the highest nucleotide sequence identity (77.28%) with LVA-Sob, which was detected in a plant of the same species, Syringa oblata, in China, whereas LVA-Sob shares higher sequence identity (97.89%) with LVA-SK, which has been detected in host plants of various species.


Assuntos
Anemia Hipocrômica , Ligustrum , Syringa , Vírus não Classificados , Vírus de DNA , Necrose , Filogenia , Folhas de Planta
10.
J Exp Bot ; 73(5): 1623-1642, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34758072

RESUMO

A purple acid phosphatase, GmPAP2.1, from the soybean (Glycine max) cultivar L29 may function as a resistance factor acting against specific strains of Soybean mosaic virus (SMV). In this study, we found that overexpression of GmPAP2.1 from L29 conferred SMV resistance to a susceptible cultivar, Lee 74. We determined that GmPAP2.1 interacted with the SMV protein P1 in the chloroplasts, resulting in the up-regulation of the ICS1 gene, which in turn promoted the pathogen-induced salicylic acid (SA) pathway. SA accumulation was elevated in response to the co-expression of GmPAP2.1 and SMV, while transient knockdown of endogenous SA-related genes resulted in systemic infection by SMV strain G5H, suggesting that GmPAP2.1-derived resistance depended on the SA-pathway for the activation of a defense response. Our findings thus suggest that GmPAP2.1 purple acid phosphatase of soybean cultivar L29 functions as an SA-pathway-dependent resistance factor acting against SMV.


Assuntos
Glycine max , Potyvirus , Fosfatase Ácida , Doenças das Plantas/genética , Glycine max/genética , Glycine max/metabolismo
11.
Mol Plant Pathol ; 23(4): 543-560, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34962034

RESUMO

Increasing lines of evidence indicate that chloroplast-related genes are involved in plant-virus interactions. However, the involvement of photosynthesis-related genes in plant immunity is largely unexplored. Analysis of RNA-Seq data from the soybean cultivar L29, which carries the Rsv3 resistance gene, showed that several chloroplast-related genes were strongly induced in response to infection with an avirulent strain of soybean mosaic virus (SMV), G5H, but were weakly induced in response to a virulent strain, G7H. For further analysis, we selected the PSaC gene from the photosystem I and the ATP-synthase α-subunit (ATPsyn-α) gene whose encoded protein is part of the ATP-synthase complex. Overexpression of either gene within the G7H genome reduced virus levels in the susceptible cultivar Lee74 (rsv3-null). This result was confirmed by transiently expressing both genes in Nicotiana benthamiana followed by G7H infection. Both proteins localized in the chloroplast envelope as well as in the nucleus and cytoplasm. Because the chloroplast is the initial biosynthesis site of defence-related hormones, we determined whether hormone-related genes are involved in the ATPsyn-α- and PSaC-mediated defence. Interestingly, genes involved in the biosynthesis of several hormones were up-regulated in plants infected with SMV-G7H expressing ATPsyn-α. However, only jasmonic and salicylic acid biosynthesis genes were up-regulated following infection with the SMV-G7H expressing PSaC. Both chimeras induced the expression of several antiviral RNA silencing genes, which indicate that such resistance may be partially achieved through the RNA silencing pathway. These findings highlight the role of photosynthesis-related genes in regulating resistance to viruses.


Assuntos
Doenças das Plantas , Potyvirus , Trifosfato de Adenosina/metabolismo , Hormônios/metabolismo , Fotossíntese/genética , Interferência de RNA , Glycine max
13.
Viruses ; 13(10)2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34696360

RESUMO

Pepper mottle virus (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this review, we summarize what is known about the molecular characteristics of PepMoV and its interactions with host plants. Comparisons of symptom variations caused by PepMoV isolates in plant hosts indicates a possible relationship between symptom development and genetic variation. Researchers have investigated the PepMoV-plant pathosystem to identify effective and durable genes that confer resistance to the pathogen. As a result, several recessive pvr or dominant Pvr resistance genes that confer resistance to PepMoV in pepper have been characterized. On the other hand, the molecular mechanisms underlying the interaction between these resistance genes and PepMoV-encoded genes remain largely unknown. Our understanding of the molecular interactions between PepMoV and host plants should be increased by reverse genetic approaches and comprehensive transcriptomic analyses of both the virus and the host genes.


Assuntos
Interações entre Hospedeiro e Microrganismos , Doenças das Plantas/virologia , Potyvirus/fisiologia , Genes vpr , Interações entre Hospedeiro e Microrganismos/genética , Solanum lycopersicum/genética , Solanum lycopersicum/virologia , Doenças das Plantas/genética , Potyvirus/genética , Solanum tuberosum/genética , Solanum tuberosum/virologia
14.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201359

RESUMO

Red pepper (Capsicum annuum, L.), is one of the most important spice plants in Korea. Overwintering pepper fruits are a reservoir of various microbial pepper diseases. Here, we conducted metagenomics (DNA sequencing) and metatranscriptomics (RNA sequencing) using samples collected from three different fields. We compared two different library types and three different analytical methods for the identification of microbiomes in overwintering pepper fruits. Our results demonstrated that DNA sequencing might be useful for the identification of bacteria and DNA viruses such as bacteriophages, while mRNA sequencing might be beneficial for the identification of fungi and RNA viruses. Among three analytical methods, KRAKEN2 with raw data reads (KRAKEN2_R) might be superior for the identification of microbial species to other analytical methods. However, some microbial species with a low number of reads were wrongly assigned at the species level by KRAKEN2_R. Moreover, we found that the databases for bacteria and viruses were better established as compared to the fungal database with limited genome data. In summary, we carefully suggest that different library types and analytical methods with proper databases should be applied for the purpose of microbiome study.


Assuntos
Bactérias/genética , Capsicum/genética , Vírus de DNA/genética , Frutas/crescimento & desenvolvimento , Metagenoma , Vírus de RNA/genética , Transcriptoma , Bactérias/classificação , Capsicum/microbiologia , Capsicum/virologia , Vírus de DNA/classificação , Frutas/microbiologia , Frutas/virologia , Vírus de RNA/classificação , Estações do Ano
15.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202675

RESUMO

Garlic (Allium sativum) is a perennial bulbous plant. Due to its clonal propagation, various diseases threaten the yield and quality of garlic. In this study, we conducted in silico analysis to identify microorganisms, bacteria, fungi, and viruses in six different tissues using garlic RNA-sequencing data. The number of identified microbial species was the highest in inflorescences, followed by flowers and bulb cloves. With the Kraken2 tool, 57% of identified microbial reads were assigned to bacteria and 41% were assigned to viruses. Fungi only made up 1% of microbial reads. At the species level, Streptomyces lividans was the most dominant bacteria while Fusarium pseudograminearum was the most abundant fungi. Several allexiviruses were identified. Of them, the most abundant virus was garlic virus C followed by shallot virus X. We obtained a total of 14 viral genome sequences for four allexiviruses. As we expected, the microbial community varied depending on the tissue types, although there was a dominant microorganism in each tissue. In addition, we found that Kraken2 was a very powerful and efficient tool for the bacteria using RNA-sequencing data with some limitations for virome study.


Assuntos
Alho/microbiologia , Metagenoma , Metagenômica , Microbiota , Bactérias/classificação , Bactérias/genética , Biologia Computacional/métodos , Metagenômica/métodos , Especificidade de Órgãos , Filogenia , Análise de Sequência de RNA
16.
Front Microbiol ; 12: 622261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643250

RESUMO

The Fusarium graminearum virus 1 (FgV1) causes noticeable phenotypic changes such as reduced mycelial growth, increase pigmentation, and reduced pathogenicity in its host fungi, Fusarium graminearum. Previous study showed that the numerous F. graminearum genes including regulatory factors were differentially expressed upon FgV1 infection, however, we have limited knowledge on the effect(s) of specific transcription factor (TF) during FgV1 infection in host fungus. Using gene-deletion mutant library of 657 putative TFs in F. graminearum, we transferred FgV1 by hyphal anastomosis to screen transcription factors that might be associated with viral replication or symptom induction. FgV1-infected TF deletion mutants were divided into three groups according to the mycelial growth phenotype compare to the FgV1-infected wild-type strain (WT-VI). The FgV1-infected TF deletion mutants in Group 1 exhibited slow or weak mycelial growth compare to that of WT-VI on complete medium at 5 dpi. In contrast, Group 3 consists of virus-infected TF deletion mutants showing faster mycelial growth and mild symptom compared to that of WT-VI. The hyphal growth of FgV1-infected TF deletion mutants in Group 2 was not significantly different from that of WT-VI. We speculated that differences of mycelial growth among the FgV1-infected TF deletion mutant groups might be related with the level of FgV1 RNA accumulations in infected host fungi. By conducting real-time quantitative reverse transcription polymerase chain reaction, we observed close association between FgV1 RNA accumulation and phenotypic differences of FgV1-infected TF deletion mutants in each group, i.e., increased and decreased dsRNA accumulation in Group 1 and Group 3, respectively. Taken together, our analysis provides an opportunity to identify host's regulator(s) of FgV1-triggered signaling and antiviral responses and helps to understand complex regulatory networks between FgV1 and F. graminearum interaction.

17.
Front Microbiol ; 11: 600775, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281800

RESUMO

Fusarium graminearum virus 1 (FgV1) is a positive-sense ssRNA virus that confers hypovirulence in its fungal host, Fusarium graminearum. Like most mycoviruses, FgV1 exists in fungal cells, lacks an extracellular life cycle, and is therefore transmitted during sporulation or hyphal anastomosis. To understand FgV1 evolution and/or adaptation, we conducted mutation accumulation (MA) experiments by serial passage of FgV1 alone or with FgV2, 3, or 4 in F. graminearum. We expected that the effects of positive selection would be highly limited because of repeated bottleneck events. To determine whether selection on the virus was positive, negative, or neutral, we assessed both the phenotypic traits of the host fungus and the RNA sequences of FgV1. We inferred that there was positive selection on beneficial mutations in FgV1 based on the ratio of non-synonymous to synonymous substitutions (d N /d S ), on the ratio of radical to conservation amino acid replacements (p NR /p NC ), and by changes in the predicted protein structures. In support of this inference, we found evidence of positive selection only in the open reading frame 4 (ORF4) protein of DK21/FgV1 (MA line 1); mutations at amino acids 163A and 289H in the ORF4 of MA line 1 affected the entire structure of the protein predicted to be under positive selection. We also found, however, that deleterious mutations were a major driving force in viral evolution during serial passages. Linear relationships between changes in viral fitness and the number of mutations in each MA line demonstrated that some deleterious mutations resulted in fitness decline. Several mutations in MA line 1 were not shared with any of the other four MA lines (PH-1/FgV1, PH-1/FgV1 + 2, PH-1/FgV1 + 3, and PH-1/FgV1 + 4). This suggests that evolutionary pathways of the virus could differ with respect to hosts and also with respect to co-infecting viruses. The data also suggested that the differences among MA lines might also be explained by mutational robustness and other unidentified factors. Additional research is needed to clarify the effects of virus co-infection on the adaptation or evolution of FgV1 to its environments.

18.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066322

RESUMO

Tomato (Lycopersicum esculentum L.) and pepper (Capsicum annuum L.) plants belonging to the family Solanaceae are cultivated worldwide. The rapid development of next-generation sequencing (NGS) technology facilitates the identification of viruses and viroids infecting plants. In this study, we carried out metatranscriptomics using RNA sequencing followed by bioinformatics analyses to identify viruses and viroids infecting tomato and pepper plants in Vietnam. We prepared a total of 16 libraries, including eight tomato and eight pepper libraries derived from different geographical regions in Vietnam. We identified a total of 602 virus-associated contigs, which were assigned to 18 different virus species belonging to nine different viral genera. We identified 13 different viruses and two viroids infecting tomato plants and 12 viruses and two viroids infecting pepper plants with viruses as dominantly observed pathogens. Our results showed that multiple infection of different viral pathogens was common in both plants. Moreover, geographical region and host plant were two major factors to determine viral populations. Taken together, our results provide the comprehensive overview of viral pathogens infecting two important plants in the family Solanaceae grown in Vietnam.


Assuntos
Capsicum/virologia , Metagenômica/métodos , Tipagem Molecular/métodos , Vírus de Plantas/genética , Solanum lycopersicum/virologia , Transcriptoma , Viroides/genética , Vírus de Plantas/patogenicidade , Vietnã , Viroides/patogenicidade
19.
Adv Virus Res ; 106: 123-144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32327146

RESUMO

In this review, we discuss recent studies of the interaction between Fusarium graminearum viruses (FgVs) and the fungal host, Fusarium graminearum. Comprehensive transcriptome and proteome analyses have shown changes in the expression of host genes in response to infection by diverse FgVs. Using omics data and reverse genetics, researchers have determined the effects of some fungal host proteins (including FgHex1, FgHal2, FgSwi6, and vr1) on virus accumulation, virus transmission, and host symptom development. Recent reports have revealed the functions of the RNAi component in F. graminearum and the functional redundancy of FgDICERs and FgAGOs in the antiviral defense response against different FgV infections. Studies have also documented a unique mechanism used by FgV1 to overcome the antiviral response of the fungal host.


Assuntos
Micovírus/fisiologia , Fusarium/virologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micovírus/genética , Fusarium/genética , Fusarium/metabolismo , Interações Hospedeiro-Patógeno , Transcriptoma
20.
Plants (Basel) ; 9(2)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046350

RESUMO

Soybean mosaic virus (SMV) occurs in all soybean-growing areas in the world and causes huge losses in soybean yields and seed quality. During early viral infection, molecular interactions between SMV effector proteins and the soybean resistance (R) protein, if present, determine the development of resistance/disease in soybean plants. Depending on the interacting strain and cultivar, R-protein in resistant soybean perceives a specific SMV effector, which triggers either the extreme silent resistance or the typical resistance manifested by hypersensitive responses and induction of salicylic acid and reactive oxygen species. In this review, we consider the major advances that have been made in understanding the soybean-SMV arms race. We also focus on dissecting mechanisms SMV employs to establish infection and how soybean perceives and then responds to SMV attack. In addition, progress on soybean R-genes studies, as well as those addressing independent resistance genes, are also addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...